
Fun Profit*

Functional
Programming

Or: How I Learned to Stop Worrying and Love Shipping Haskell Code

&
for

*after accomplishing step 2: ???
Daniel Gąsienica
March 17, 2017

Hello everyone! Thanks for joining me today for brownbag called ‘Functional Programming for Fun and Profit — Or: How I Learned to Stop Worrying and Love Shipping
Haskell Code’.

Amuse-Bouches
Background

Food for Thought*

*Opinions

This talk is broken down into three acts:

First, I’ll talk about how I got into functional programming.

Second, I will present you a few of my favorite concepts that I learned.

Third, I will share some food for thought I have found on my journey so far.

What this talk is about

This talk is about sharing the excitement of functional programming by giving you some ideas what it’s good for and how it addresses problems we have in imperative
programming.

It is about picking a few concepts and diving into them.

It is supposed to teach you a few things, but more importantly, it is intended to spark your curiosity and to question the status quo.

What this talk is not about

This talk is not about teaching you the syntax of a new language or explain every single concept touched upon in great depth. Unfortunately, the time for that is simply
too short.

However, I love this stuff, so if anything is unclear, please speak up and I’ll try my best to answer your question.

If your question needs more time, we can continue the conversation afterwards.

Background

Before I dive into the material, I wanted to briefly go back in time and explain where my interest in functional programming comes from.

ETH 2011

In 2008, I attended a class called ‘Formal Methods & Functional Programming’ at my university in Switzerland. This is where I was first exposed to—surprise…

…a language called Haskell. I was immediately fascinated by how concise, elegant, and… how different it was.

However, this talk is not about Haskell. It’s more about the lessons it taught me and that can also be learned from other statically typed (and some pure) functional
programming languages such as ML, PureScript, Elm, etc.

Thanksgiving 2015

Photo: https://commons.wikimedia.org/wiki/User:Braniff747SP

After a few failed attempts to learn Haskell since that class I took in 2008, I was riding the train from California to Seattle after Thanksgiving and had 31+ hours to kill.
That’s when I decided to finally tackle learning Haskell.

Instead of programming with toy examples, I chose to learn by writing real-world code.

How? I started porting a Node.js web service that Aseem, myself, and a few of our friends have built.

https://commons.wikimedia.org/wiki/User:Braniff747SP

zoomhub

That web service is called ZoomHub and has been running in production on Haskell since April of last year (2016).

ZoomHub

http://zoomhub.net?url=http://www.rhysy.net/Timeline/LargeTimeline.png

Image URL

Zoomable Image

http://zoomhub.net/K4J1

[DEMO]

Universe timeline: http://zoomhub.net/K4J1

http://zoomhub.net?url=http://www.rhysy.net/Timeline/LargeTimeline.png
http://zoomhub.net/K4J1

Amuse-Bouches

Immutability
&

The Value of Values

The Pain

* Fixed in recent versions of WebKit/Chrome

*

The Bugs

var config = {
 //...
 baseURL: 'http://api.zynga.com',
 //...
}

function bar(config) {
 console.log(config.baseURL.length)
}

var config = {
 //...
 baseURL: 'http://api.zynga.com',
 //...
}

function bar(config) {
 // NPE
 console.log(config.baseURL.length)
}

var config = {
 //...
 baseURL: 'http://api.zynga.com',
 //...
}

function foo(config) {
 // Don’t ask me why but…
 delete config.baseURL
}

function bar(config) {
 // NPE
 console.log(config.baseURL.length)
}

The Confusion

> 1 === 1
true

> true === true
true

> "hello" === "hello"
true

> 1 === 1
true

> true === true
true

> "hello" === "hello"
true

> [] === []
false

> [1, 2] === [1, 2]
false

> {} === {}
false

> {"a": "b"} === {"a": "b"}
false

> 1 === 1
true

> true === true
true

> "hello" === "hello"
true

> 1 == 1
True

> True == True
True

> "hello" == "hello"
True

> [] == []
True

> [1, 2] == [1, 2]
True

> Map.fromList [] == Map.fromList []
True

> Map.fromList [("a", "b")] == Map.fromList [("a", "b")]
True

> [] === []
false

> [1, 2] === [1, 2]
false

> {} === {}
false

> {"a": "b"} === {"a": "b"}
false

> let a = [3, 1, 2]

> let b = a.sort()

> b
[1, 2, 3]

> let a = [3, 1, 2]

> let b = a.sort()

> b
[1, 2, 3]

> a
[1, 2, 3]

> let a = [3, 1, 2]

> let b = sort a

> b
[1, 2, 3]

> a
[3, 1, 2]

> let a = [3, 1, 2]

> let b = a.sort()

> b
[1, 2, 3]

> a
[1, 2, 3]

— space = function
— application
— i.e. JavaScript: sort(a)

Conclusion
Abandon distinction between

values and references
and treat everything as

immutable values.

https://www.infoq.com/presentations/Value-Values

https://www.infoq.com/presentations/Value-Values

null
The Billion-Dollar Mistake

“I call it my billion-dollar mistake.
It was the invention of

the null reference in 1965.”
— C. A. R. Hoare

boolean string number object

boolean string number object

any

boolean string number object

any

boolean string number object

any

null

boolean string number object

any

null

let names = ["Aseem", "Matt"]
let isCool = x => x.length <= 4
let name = names.find(isCool)
console.log(name.toUpperCase())
// > MATT

let names = ["Aseem", "Matt"]
let isCool = x => x.length <= 4
let name = names.find(isCool)
console.log(name.toUpperCase())
// > MATT

let names = ["Aseem"]
let isCool = x => x.length <= 4
let name = names.find(isCool)
console.log(name.toUpperCase())

// console.log(name.toUpperCase())
// ^
//
// TypeError: Cannot read property
// 'toUpperCase' of undefined

main = do
 let names = ["Aseem", "Matt"]
 isCool x = length x <= 4
 name = find isCool names
 print (toUpperCase name)

-- null.hs:5:22:
-- Coudn't match expected type ‘String’
-- with actual type ‘Maybe String’
-- In the first argument of ‘toUpperCase’,
-- namely ‘name’
-- In the first argument of ‘print’,
-- namely ‘(toUpperCase name)’

let names = ["Aseem", "Matt"]
let isCool = x => x.length <= 4
let name = names.find(isCool)
console.log(name.toUpperCase())
// > MATT

let names = ["Aseem"]
let isCool = x => x.length <= 4
let name = names.find(isCool)
console.log(name.toUpperCase())

// console.log(name.toUpperCase())
// ^
//
// TypeError: Cannot read property
// 'toUpperCase' of undefined

find :: (a -> Bool) -> [a] -> Maybe a
Array<A>.find(
 predicate: (value: A) => boolean
): A | null

data Maybe a = Just a | Nothing

data Maybe a = Just a | Nothing

foo :: Maybe Int
foo = Just 5
or
foo = Nothing

bar :: Maybe String
bar = Just "Hello"
or
bar = Nothing

let names = ["Aseem"]
let isCool = x => x.length <= 4
let name = names.find(isCool)
console.log(name ?
 name.toUpperCase() : "nuddin"
)
// nuddin

main = do
 let names = ["Aseem"]
 isCool x = length x <= 4
 name = find isCool names
 print (case name of
 Just s -> toUpperCase s
 Nothing -> "nuddin"
)
-- nuddin

let names = ["Aseem"]
let isCool = x => x.length <= 4
let name = names.find(isCool)
console.log(name ?
 name.toUpperCase() : "nuddin"
)
// nuddin

Conclusion
Unhandled nulls can

cause unexpected runtime
errors.

Explicitly model the presence
and absence of values and

enforce handling of all cases.

Types

First-Class
Compile-Time

Type Safety

data User = User
 { userId :: UserId
 , userEmail :: Email
 } deriving Show

newtype Email = Email String deriving Show
newtype UserId = UserId String deriving Show

createUser :: UserId -> Email -> User
createUser userId userEmail = User { userId = userId, userEmail = userEmail }

-- Main
main = do
 let email = Email "daniel@fiftythree.com"
 userId = UserId "3490"
 print (createUser email userId)

{-
 types-user.hs:16:21:
 Couldn't match expected type ‘UserId’ with actual type ‘Email’
 In the first argument of ‘createUser’, namely ‘email’
 In the first argument of ‘print’, namely
 ‘(createUser email userId)’

 types-user.hs:16:27:
 Couldn't match expected type ‘Email’ with actual type ‘UserId’
 In the second argument of ‘createUser’, namely ‘userId’
 In the first argument of ‘print’, namely
 ‘(createUser email userId)’
-}

class User {
 private userId: string
 private userEmail: string

 constructor(userId: string, userEmail: string) {
 this.userId = userId
 this.userEmail = userEmail
 }
}

// Main
let email = 'daniel@fiftythree.com'
let userId = '3490'

console.log(new User(email, userId))
// User { userId: 'daniel@fiftythree.com', userEmail: '3490' }

data User = User
 { userId :: UserId
 , userEmail :: Email
 } deriving Show

class User {
 private userId: string
 private userEmail: string

 constructor(userId: string
 userEmail: string) {
 this.userId = userId
 this.userEmail = userEmail
 }
}

// `deriving Show` is explicit generation
// of `Object.prototype.toString()`

createUser :: UserId -> Email -> User
createUser userId userEmail = User
 { userId = userId
 , userEmail = userEmail
 }

class User {
 private userId: string
 private userEmail: string

 constructor(userId: string,
 userEmail: string) {
 this.userId = userId
 this.userEmail = userEmail
 }
}

// function createUser(
// userId: UserId,
// userEmail: Email
//): User

-- Main
main = do
 let email = Email "daniel@fiftythree.com"
 userId = UserId "3490"
 print (createUser email userId)

{-
 types-user.hs:16:21:
 Couldn't match expected type ‘UserId’
 with actual type ‘Email’
 In the first argument of ‘createUser’,
 namely ‘email’
 In the first argument of ‘print’,
 namely ‘(createUser email userId)’

 types-user.hs:16:27:
 Couldn't match expected type ‘Email’
 with actual type ‘UserId’
 In the second argument of ‘createUser’,
 namely ‘userId’
 In the first argument of ‘print’,
 namely ‘(createUser email userId)’
-}

// Main
let email = 'daniel@fiftythree.com'
let userId = '3490'

console.log(new User(email, userId))
// User { userId: 'daniel@fiftythree.com',
// userEmail: '3490' }

mailto:daniel@fiftythree.com

(Awkward) ‘Solution’

class User {
 private userId: UserId
 private userEmail: Email

 constructor(userId: UserId, userEmail: Email) {
 this.userId = userId
 this.userEmail = userEmail
 }
}

type Email = string & {_emailBrand: any}
type UserId = string & {_userIdBrand: any}

// Main
let email = 'daniel@fiftythree.com' as Email
let userId = '3490' as UserId

console.log(new User(email, userId))
// Argument of type 'Email' is not assignable to parameter of type 'UserId'.
// Type 'Email' is not assignable to type '{ _userIdBrand: any; }'.
// Property '_userIdBrand' is missing in type 'Email'.

newtype Email = Email String deriving Show
newtype UserId = UserId String deriving Show

-- Main
main = do
 let email = Email "daniel@fiftythree.com"
 userId = UserId "3490"
 print (createUser email userId)

type Email = string & {_emailBrand: any}
type UserId = string & {_userIdBrand: any}

// Main
let email = 'daniel@fiftythree.com' as Email
let userId = '3490' as UserId
console.log(new User(email, userId))

newtype Email = Email String deriving Show
newtype UserId = UserId String deriving Show

-- Main
main = do
 let email = Email "daniel@fiftythree.com"
 userId = UserId "3490"
 print (createUser email userId)

type Email = string & {_emailBrand: any}
type UserId = string & {_userIdBrand: any}

// Main
let email = 'daniel@fiftythree.com' as Email
let userId = '3490' as UserId
console.log(new User(email, userId))

newtype Email = Email String deriving Show
newtype UserId = UserId String deriving Show

-- Main
main = do
 let email = Email "daniel@fiftythree.com"
 userId = UserId "3490"
 print (createUser email userId)

Language
Feature

type Email = string & {_emailBrand: any}
type UserId = string & {_userIdBrand: any}

// Main
let email = 'daniel@fiftythree.com' as Email
let userId = '3490' as UserId
console.log(new User(email, userId))

newtype Email = Email String deriving Show
newtype UserId = UserId String deriving Show

-- Main
main = do
 let email = Email "daniel@fiftythree.com"
 userId = UserId "3490"
 print (createUser email userId)

Language
Feature Hack

‘Built-in’ Types

data Bool = True | False

// function and(a: boolean, b: boolean): boolean
and :: Bool -> Bool -> Bool
and True True = True
and _ _ = False

// function or(a: boolean, b: boolean): boolean
or :: Bool -> Bool -> Bool
or False False = False
or _ _ = True

This is a simplified illustration of to implement your own Bool type. The real Haskell definition is (only) slightly more involved.

data Bool = True | False

(&&) :: Bool -> Bool -> Bool
(&&) True True = True
(&&) _ _ = False

(||) :: Bool -> Bool -> Bool
(||) False False = False
(||) _ _ = True

// Define: (&&)
// Use: True && False

Security

“Make sure we never
store plaintext passwords

in our database.”

newtype PlainTextPassword = PlainTextPassword String deriving Show
newtype HashedPassword = HashedPassword String deriving Show

getPassword :: IO PlainTextPassword
getPassword = do
 s <- getLine
 return (PlainTextPassword s)

hashPassword :: PlainTextPassword -> HashedPassword
hashPassword (PlainTextPassword s) = HashedPassword ((reverse s) ++ "$SALT$")

storePassword :: HashedPassword -> IO ()
storePassword (HashedPassword s) = putStrLn s

-- Main
main = do
 putStrLn "Enter password please:"
 p <- getPassword

 putStrLn "\nStored the following hashed password:"
 storePassword p

-- types-security.hs:21:17:
-- Couldn't match expected type ‘HashedPassword’
-- with actual type ‘PlainTextPassword’
-- In the first argument of ‘storePassword’, namely ‘p’
-- In a stmt of a 'do' block: storePassword p

newtype PlainTextPassword = PlainTextPassword String deriving Show
newtype HashedPassword = HashedPassword String deriving Show

getPassword :: IO PlainTextPassword
getPassword = do
 s <- getLine
 return (PlainTextPassword s)

hashPassword :: PlainTextPassword -> HashedPassword
hashPassword (PlainTextPassword s) = HashedPassword ((reverse s) ++ "$SALT$")

storePassword :: HashedPassword -> IO ()
storePassword (HashedPassword s) = putStrLn s

-- Main
main = do
 putStrLn "Enter password please:"
 p <- getPassword

 putStrLn "\nStored the following hashed password:"
 storePassword (hashPassword p) —- before: `storePassword p`

-- Enter password please:
-- passw0rd
--
-- Stored the following hashed password:
-- dr0wssap$SALT$

Conclusion
Types can help prevent many

errors at compile-time.
They are a versatile and powerful

tool to model your domain.

Abstraction
&

Type Classes

map

console.log([1, 2, 3].map(x => x * 3))
// [3, 6, 9]

// Array<A>.map(fn: (value: A) => B): Array
console.log([1, 2, 3].map(x => x * 3))
// [3, 6, 9]

main = do
 -- map :: (a -> b) -> [a] -> [b]
 print (map (\x -> x * 3) [1, 2, 3])
 -- [3, 6, 9]

main = do
 -- map :: (a -> b) -> [a] -> [b]
 print (map (3*) [1, 2, 3])
 -- [3, 6, 9]

main = do
 -- map :: (a -> b) -> [a] -> [b]
 print (map (\x -> x * 3) [1, 2, 3])
 -- [3, 6, 9]

main = do
 -- map :: (a -> b) -> [a] -> [b]
 print (map (3*) [1, 2, 3])
 -- [3, 6, 9]

// Array<A>.map(
// fn: (value: A) => B
//): Array
console.log([1, 2, 3].map(x => x * 3))
// [3, 6, 9]

Array<A>.map(fn: (value: A) => B): Array

F<A>.fmap(fn: (value: A) => B): F

// Container `F`

// `fmap` is generic `map` that
// works on any container `F`

class Functor f where
 fmap :: (a -> b) -> f a -> f b

—- Container `f`

—- `fmap` is generic `map` that
—- works on any container `f`

instance Functor [] where
 fmap fn [] = []
 fmap fn (x:xs) = (fn x) : (fmap fn xs)

—- x = first element of the list —- xs = rest (tail) of the list

—- (:) = prepend list element

instance Functor [] where
 fmap = map

instance Functor Maybe where
 fmap fn Nothing = Nothing
 fmap fn (Just x) = Just (fn x)

main = do
 -- List
 print (fmap (3*) [1, 2, 3])
 -- > [3, 6, 9]

 -- Maybe
 print (fmap (3*) Nothing)
 -- > Nothing
 print (fmap (3*) (Just 2))
 -- > Just 6

 -- IO
 -- getLine :: IO String
 putStrLn "\nWhat is your name?"
 message <- fmap ("Hello, " ++) getLine
 putStrLn message
 -- > What is your name?
 -- > Daniel
 -- > "Hello, Daniel"

 -- Async
 putStrLn "\nSay something…"
 asyncPrompt <- async getLine
 asyncMessage <- wait (fmap ("Async: " ++) asyncPrompt)
 putStrLn asyncMessage
 -- > Say something…
 -- > Yo yo
 -- > Async: Yo yo

Conclusion
Expressive languages allow

developers to describe better
abstractions.

Type classes are a
mechanism for

abstracting common behaviors
between different types.

Food for Thought

Impure Shell
&

Pure Core

Pure Core
• business logic
• data transformation
• validation
• parsing
• encoding / decoding

Impure Shell
• user input
• networking
• file IO
• database
• randomness
• rendering

Pure Core

- pure computations (no external input besides arguments and no side-effects)

- immutable data

- testable because a pure function returns the same output for a set of specific inputs

Impure Shell

- Side-effects

- Mutation

- Hard to test

Pure Core
• lexical analysis
• syntax analysis
• type checking
• optimize code
• generate code

Example: Compiler
Impure Shell
• read CLI options
• read environment

variables
• read source files
• write binary

CONTROVERSIAL CONTENT
ADVISORY
P A R E N T A L

Sound Foundation > Weak Ecosystem

Compared to many imperative languages, functional languages have a sound foundation with weaknesses in their ecosystem, e.g. tooling, documentation, education,
etc.

However, no matter how good your tooling/libraries, etc. are, if mutation, `null`, side-effects, etc. are at the core of your foundation, you will always struggle (runtime
errors, difficulty with parallelism/concurrency/multicore, lack of STM, etc.).

On the other hand, tooling for a sound system can be improved through benevolent volunteers, industry adoption, etc.

Stay Hungry

If you ever decide to learn a new language, instead of picking another imperative language such as Go, even Swift, etc., which are very similar to what you have probably
been using all your life except for a few new concepts, pick something with a vastly different approach, e.g. a functional programming language such as Haskell,
Standard ML, OCaml, PureScript, Elm. If FP is not your thing, at least pick something like Prolog (logic programming), Matlab (array language), etc.

Q&A

“The only thing necessary for the
triumph of [bad technology] is for

good men to do nothing.”

“All [bad technology] needs to gain a
foothold is for people of good conscience

to remain silent.”

Thank you. Does anyone have any questions?

